欢迎您访问澳门·威尼斯人(Venetian)轴承生产有限公司
全国咨询热线: HASHKFK

新闻资讯

威尼斯人常见问题

Venetian

澳门威尼斯人娱乐场-Venetian Macao Casino速看!黄仁勋万字实录:甩出"物理AI"王牌

作者:小编2026-01-20 22:46:36

  澳门威尼斯人娱乐场-Venetian Macao Casino(访问: hash.cyou 领取999USDT)

澳门威尼斯人娱乐场-Venetian Macao Casino速看!黄仁勋万字实录:甩出"物理AI"王牌

  Earth-2 AI,理解物理定律的AI;我们在ForecastNet方面的工作;我们在Cordiff方面的工作,真的彻底改变了人们进行天气预报的方式。Nemotron,我们现在正在那里进行开创性的工作。第一个混合Transformer SSM模型,速度快得惊人,因此可以进行长时间思考,或者快速思考(不那么长时间)并产生非常非常智能的答案。你们可以期待,我们在不久的将来发布Nemotron3的其他版本。

  这个基本框架现在正在被整合,而我刚才描述的一切,我们有幸与一些世界领先的企业平台公司合作。例如Palantir,他们整个AI和数据处理平台正在集成,并由英伟达加速。还有世界领先的客户服务和员工服务平台ServiceNow、全球顶级的云端数据平台Snowflake。CodeRabbit,我们在英伟达内部广泛使用。CrowdStrike,正在创建AI来检测和发现AI威胁。NetApp,他们的数据平台现在上面有英伟达的语义AI,以及智能体系统,用于客户服务。

  在此过程中,离不开Rubin构架。这个平台的诞生,是为了应对我们面临的一个根本性挑战:AI所需的计算量正在飙升,对英伟达GPU的需求也在飙升。这种飙升是因为模型每年都在以10倍、一个数量级的规模增长。更不用说,o1模型的引入是AI的一个转折点。推理不再是一次性给出答案,现在是一个思考过程。为了教会AI如何思考,强化学习和极其大量的计算被引入了后训练阶段。它不再是监督式微调(也称为模仿学习或监督训练),现在有了强化学习,本质上是计算机通过自我尝试不同迭代来学习如何执行任务。结果,用于预训练、后训练、测试时缩放的计算量爆炸式增长。

  第三,我们做的一件伟大的发明叫做NVFP4 Tensor Core。我们芯片中的Transformer引擎不仅仅是我们放入数据通路的某种4位浮点数,它是一个完整的处理器单元,懂得如何动态、自适应地调整其精度和结构,以处理Transformer的不同层次,从而在可以损失精度的地方实现更高的吞吐量,在需要的时候恢复到最高的可能精度。这种动态调整能力无法通过软件实现,因为它运行得太快了。所以必须在处理器内部自适应地完成。这就是NVFP4的意义。

  它非常成功,在各种设施中广泛使用,正在席卷整个AI领域。其性能令人难以置信,尤其是当你拥有一个200兆瓦的数据中心,或者一个千兆瓦的数据中心(价值数百亿美元,一个千兆瓦数据中心大约500亿美元)时。如果网络性能能让你额外获得10%的收益——以Spectrum-X为例,实现25%更高的吞吐量并不罕见——仅仅是10%的提升,就价值50亿美元。等于网络成本完全免费了。这就是为什么每个人都在使用Spectrum-X的原因。

  第八是NVLink-6交换机。每个机架交换机里面有四个芯片,每颗芯片都有历史上最快的SerDes。世界才刚刚达到200Gb/s,而这是每秒400Gb/s的交换机。这之所以如此重要,是因为它能让每个GPU都能同时与其他所有GPU进行通信。这个位于机架背板上的交换机,使我们能够以相当于全球互联网数据总量两倍的速度移动数据。全球互联网的横截面带宽大约是每秒100太字节,而这个是每秒240太字节,让每个GPU都能同时与其他所有GPU协同工作。

  后面是NVLink脊柱,基本上是两英里长的铜缆。铜是我们所知的最佳导体。这些都是屏蔽铜缆、结构铜缆,是计算系统中有史以来使用最多的。我们的SerDes以每秒400Gb的速率驱动这些铜缆从机架顶部一直到机架底部。这里面总共有长3200米、5000根铜缆,这使NVLink脊柱成为可能。这项革新真正开启了我们的HGX系统,我们决定创建一个行业标准系统,让整个生态系统、我们所有的供应链都能基于这些组件进行标准化。构成这些HGX系统的组件大约有8万个。

  几年前我们推出了Spectrum-X,以便彻底改变网络连接的方式。以太网确实易于管理,每个人都有以太网技术栈,世界上每个数据中心都知道如何处理以太网。而当时我们使用的另一种技术叫做InfiniBand,用于超级计算机。InfiniBand延迟非常低,但它的软件栈和整个可管理性对使用以太网的人来说非常陌生。所以我们决定首次进入以太网交换机市场。Spectrum-X一经推出就大获成功,使我们成为世界上最大的网络公司。

  对于生成的每一个token,GPU都会读入整个模型、整个工作内存,产生一个token,然后将这个token存回KV缓存。下一次它再做同样的事情时,它会再次读入整个内存,流经GPU,生成另一个token。它就这样重复进行。显然,如果你长时间与AI对话,这个内存——这个上下文内存——将会急剧增长。更不用说模型本身在增长,我们与AI交互的轮次在增加。我们甚至希望这个AI能伴随我们一生,记住我们与它进行过的每一次对话,对吧?我要求它研究的每一个链接……当然,共享超级计算机的用户数量也会持续增长。